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ABSTRACT

We describe an algorithm for the symmetric traveling salesman problem (TSP)

based on a bipartite two-matching lower bounding technique. The lower bound is

strengthened by using the bipartite two-matching as the basis for a heuristic algorithm

for the dual of integer two-matching. We use this dual as a lower bound for the

symmetric traveling salesman problem in a branch and bound algorithm. Results are

presented for random symmetric TSPs with up to 3000 cities. On Euclidean problems

the two-matching bound is weaker than on random problems and algorithm

performance deteriorates as a result. The algorithm successfully solves 11 of 15
Euclidean problems from the literature with sizes ranging from 17 to 99 cities.

1. Introduction

Although the traveling salesman problem (TSP) is NP-complete, some success has been achieved

recently in obtaining exact solutions for certain problem classes. Random asymmetric problems with up

to 500,000 cities have been solved using assignment problem (AP) lower bounding techniques [1-3]. A

euclidean problem with more than 2300 cities was solved tc optimality using lower bounds from an LP
relaxation strengthened by cutting planes [4].

The two-matching problem is the natural analog of the AP for the symmetric TSP and it therefore

makes sense to investigate its performance as a lower bounding technique. Bellmore and Malone [5]

experienced some success with the two-matching relaxation for the symmetric TSP but were limited to

investigating small problems by the available computer technology and lack of an effective two-matching

algorithm. Two-matching is a polynomial class problem and may be solved using general LP codes [6] or
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codes based on the work of Edmonds [7]. In section 2, we present a method for obtaining bounds close to

that of two-matching using a much faster special purpose algorithm. We relax the blossom constraints
[8] required for integer two-matching and transform the relaxation to a bipartite two-matching problem
which may be solved as a capacitated network flow problem. This bound is then strengthened using a
primal-dual algorithm, producing a primal two-matching, which may be sub-optimal, and a dual solution
whose cost is a valid lower bound on the cost of an optimal two-matching. The gap between the primal

and dual objective functions may be removed using a general LP solver as a post processing step, but in
practice the computational effort may not be justified. In section 3 we describe a branch and bound
algorithm for the symmetric TSP, based on the lower bounds provided by our approximate dual two-
matching algorithm. Section 4 contains computational results on random symmetric TSPs and on

euclidean problems taken from the literature. Section 5 presents the conclusions.

2. Primal and Dual Two-Matching Problem Formulation

Two-matching, which is a special case of b-matching with upper bounds, may be formulated as an
integer program on an undirected graph G =(VE) with edge weights cij and binary edge variables xij as

follows:

min E CijXij (1)
(,,J) E

subject to:

, xj = 2, ViE V (2)
j:(ij)e E

XijE {0,1) V(i,j)e E (3)

If integrality is replaced by the following constraint, the resulting linear program admits only half integral

solutions, i.e. xijc {0,/2,1).

0<..ii l Vi,jEE (4)

The linear program of Equations (1,2,4) may be rapidly solved via a capacitated network flow algorithm

on a bipartite auxiliary graph as described in [9]. Obtaining an optimal solution to Equations (1-3)

requires eliminating the half integral xij at minimal cost. Following [10], the half integral xj may be
interpreted with respect to graph G as forming cycles of odd and even numbers of et'ges. Equation (5)

defines the blossom constraints which eliminate the half integral solutions [6].

V RER, T%5(R),ITI odd: , Xij+ F Xij /2[21RI+ITI-1] (5)
(ij)e a(R) (i,j)e T

where for wgV:

8(w) = {(i,) E I i e w,jo w)
O(w) = ((i,j)E E I i E w,je w}

= (RcVI IR 1>3)

An integer two-matching may be found in a straightforward manner by iteratively adding violated

blossom constraints to the LP until an integer solution is obtained [6]. The problem size which may be

solved using this approach is limited by the use of general purpose LP codes which don't exploit problem
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specific structure. Here we introduce a fast, albeit approximate method for obtaining the two-matching

lower bounds in the symmetric TSP. Dualizing the constraints in (5), yields the following dual

formulation for two-matching:

Maximize (Y i,YR,T) (6)

O(Yi,yRT)= ii yR,T R,r+ xij• i i r= V VRT (iQ)e E)

subject to:

YR,T->O

where

Ciq = Ci -Yi -Y + X YR,T (7)
(RT)e r-i

and

Fij = { (R,T)IR r, Tg8(R), IT I odd, (ij)ra(R)uT}

(RT = %(21R I+ITI-1]

VR,T VRE t,TgS(R), IT I odd

The complementary slackness conditions implied by the dual are as follows:

q > 0--x =0 (8)

Cij <  O--xij = 1 (9)

Cij = O-"xij = 0 or xij= 1 (10)

yR,r>O-4 F xj+ Y Xij = '/[21R +ITI-I] (11)
(i,j)e 0(R) (ij)e T

The dual objective value E(Yi,YRT) is a lower bound on the cost of an optimal two-matching and thus on
the optimal cost of a TSP solution.

3. A Fast Heuristic Algorithm for the Two-Matching Dual

Our algorithm for solving (6) consists of three phases, (1) solving Equations (1,2,4), (2) even cycle
elimination, (3) odd cycle elimination.
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1. LP Solution Using a Bipartite Auxiliary Graph

Equations (1,2,4) may be solved by any general purpose LP solver. However, on a suitably defined

directed bipartite graph, the problem may be solved using much faster capacitated network flow

algorithms. Given G =(VE), consider the related graph B = (S,TA) with vertex sets S =V, T=V and arc

set A ={(i,j):iES,jeT,(i,j)cE). Each vertex inS is a source of two units of flow and each vertex in Tis a

sink for two units, each arc having a maximum capacity of one unit of flow. If the solution is interpreted

as a bipartite two-matching, each vertex in S and T will be incident to two arcs. The bipartite two-

matching interpretation may be used to construct an optimal solution to Equations (1,2,4) using the
following three rules: (1) If arcs (ij) and (j,i) are present, then xii, (ij)e E, is one in the LP solution; (2) If

arc (ij) or (j,i) is present, then xi1, (ij)E E is one half in the LP solution; (3) All other xij, (ij)s E are zero.
If the bipartite two-matching solution on B is symmetric, i.e. arc (ij) is present if and only if arc (j,i) is
present, an optimal integer two-matching is found on G. If not, the half integral variables of the LP
solution form a set of cycles on the edges of G. The removal of these cycles is required to find an optimal

integer two-matching.

2. Even cycle elimination

Cycles of even length and pairs of odd length cycles which are not disjoint may be trivially removed
without altering the cost of the solution, see [9], Figure 1, and Figure 2a,2b.

3. Disjoint odd cycle elimination

The removal of disjoint odd cycles is accomplished by finding zero reduced cost walks, whose edges

alternate between those in and out of the matching, connecting a pair of odd cycles. Once such a walk is
found, the matching may be altered by complementing the variables corresponding to the edges in the
walk. Both odd cycles are eliminated by alternately setting variables in each odd cycle to zero and one
starting at the vertex at which the walk is incident in such a way as to obtain a two-matching (see Figure
2c,2d). The alternating walks are found by growing an alternating tree rooted at an odd cycle. The

labeling technique used here is taken from Anstee [101 who describes a method for building such

alternating trees for the unweighted b-matching problem. All vertices in the tree ,.ossess alternating
walks back to the root odd cycle. Vertices whose parent edge is in or out of the matching, receive T and
S labels respectively. Because graph G is not bipartite, blossoms may form and these are collapsed into

pseudo-vertices as described in [101. If the tree becomes Hungarian, the dual variables are increased to

bring additional arcs into the tree. If the alternating walks required for odd cycle elimination are found
without increases to the dual variables, we find an optimal two-matching at the same cost as the LP

relaxation. If dual variable increases are required, the integer two-matching cost is elevated above that of
the LP relaxation.

The method outlined below requires that the dual variables associated with certain blossom

constraints be made nonzero. Complementary slackness requires that blossom constraints with nonzero
yRT be satisfied at equality rather than inequality (see Equation (11)). Proper construction of the

alternating walk guarantees that complementary slackness is satisfied for the blossom constraints
associated with pseudovertices formed in the alternating tree. However, consider the case when an
alternating walk intersects a pseudovertex from a tree used to eliminate a previously existing pair of odd

cycles. If the YR" for that pseudovertex is nonzero, the transfer may alter the matching so that the
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blossom constraint is satisfied with inequality. This leads to a duality gap between the cost of the primal

and dual solutions, although the dual remains a valid lower bound. Although this gap is undesirable, in

practice it is often small or non-existent so that the lower bounds are still strong enough to solve many
nontrivial symmetric TSPs. Naturally, this gap may be removed by using a general purpose LP solver
with the primal solution as a starting point. Derigs avoids a duality gap in a I-matching algorithm by

locally adjusting the dual variables whenever an alternating walk intersects an existing blossom with

associated nonzero dual [I ]. The blossom constraints are more complicated for two-matching and

apparently no analogous local method for dual variable adjustment exists.

4. Algorithm for Removing Odd Directed Cycles

We now precisely describe an algorithm for removing disjoint pairs of odd cycles until an integer two-

matching on G is constructed. In the description, set L refers to those vertices from which further

alternating tree growth may occur.
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while(an odd cycle remains)
begin

Find the smallest odd cycle and form its members into a pseudovertex
fixing the sets R and T. If no such cycle exists, an integer
two-matching on G has been found. Give all members of the cycle S and T
labels. Add the members to the set L.

while(set L is not empty)

begin

Remove a vertex u from L.

Perform the following if u is S labeled: Scan the S labeled
vertex u. For each w with (u,w) in the matching and
C,=O, form a new pseudovertex using edge (u,w)
if w is S labeled (see Pseudovertex Formation below). If w is not
S or T labeled, edge (u,w) is in the matching, and 3,, = 0,
add (u,w) to the tree, place w in L, and give w a T label.
If w is a member of an odd cycle, use the alternating walk to
eliminate the odd cycles at each end and repeat from the beginning
of the outermost while loop.

Perform the following if u is T labeled: Scan the T labeled
vertex u. For all vertices w~u such that (u,w) is not in
the matching and --- 0, form a new pseudovertex if
w is T labeled. If w is not S or T labeled and E,,, = 0,
add edge (u,w) to the tree, place w in L, and give w an S
label. If w is a member of an odd cycle, use the alternating walk
to eliminate the odd cycles at each end and repeat from the beginning
of the outermost while loop.

end

An f-barrier has been found. Find an edge (u,w) with minimal absolute
value reduced cost such that the edge can either expand the tree or form
a new pseudovertex. Consider edges in which u is in the tree and w
is not (these lead to expansion of the tree) and edges in which both u
and w are in the tree (these form new pseudovertices). Let "r be the
minimum absolute value reduced cosL Adjust the dual cost by?. For
all vertices i adjust yi by -'t if i is S labeled and not T
labeled and by - if i is T labeled but not S labeled. For all

outermost pseudo-vertices, adjust YRT by 2* and y by
,t for iE R. Check for further pseudovertex formation caused by
the dual variable update. For all new zero cost intra-tree edges (u,w)
form a new pseudovertex. For all edges (u,w) not in the matching, with
u T labeled, w not in the tree, and -,,, = 0, give w
an S label. For all edges (u,w) in the matching, with u S labeled,
w not in the tree, and -c, = 0, give w an T label.

end

We now explain pseudovertex formation and odd cycle elimination in more detail:

Pseudovertex Formation
Pseudovertices may be formed by adding edge (u,w) to the alternating tree under either of the following
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conditions: (i) u and w are S labeled and the edge (u,w) is in the matching, (ii) u and w are T labeled and the
edge (u,w) is not in the matching. Furthermore, u and w must not already be in the same pseudovertex and
reduced cost of the edge _C,, must be zero. When edge (u,w) forms a new pseudovertex, all vertices in the
cycle created by (u,w) are incorporated into the new pseudovertex. Note that some of these vertices may
themselves be pseudovertices. All actual (non-pseudo) vertices contained in the pseudovertex form the R set.
For each u ER, there is a unique vertex w 9 R, (u,w) in the matching. These edges (u,w) form the T set. All
vertices in R receive both S and T labels.

Odd cycle elimination
Let (ij) be the edge of an alternating walk incident to an odd cycle, with vertex j a member of the cycle. Let
the P = {P0,P 1. " 2+1 } denote the vertices in the cycle, with P0 = P21+ = vertex j. If edge (i,) is
originally in the matching, then the cycle gains parity, i.e. following augmentation edges (P0,P1) and
(P2,P2t. 1) are in the matching, and the remaining edges in the odd cycle alternately are out and in the
matching. Otherwise, the cycle loses parity and following augmentation edges (Po,P1) and (P 21,P 21+1 ) are
out of the matching, and the remaining edges in the odd cycle alternately are in and out of the matching.

5. Branch and Bound Algorithm

An integer programming formulation for the symmetric TSP is given by (1-3) plus the following

subtour elimination constraints:

E E xi<_fS 1-1 VScV,3<_IS15n-l (12)
ie S je Sj >i

We developed a branch and bound algorithm by dropping the subtour elimination constraints and
utilizing the dual objective function from the previous section as a lower bound. The constraints in
Equation (12) are enforced using branching rules as described in [12, 13]. Upper bounds are provided by
patching the primal two-matching into a single tour using the algorithm of Karp [ 14].

The speed of the computation is enhanced using a sparse matrix method similar to that described in
[2]. We form a sparse cost matrix by discarding all elements larger than some threshold X. The

optimality of the solution relative to the fully dense matrix is checked after the solution is obtained. Let
v(STSP) and v(root) be the solution to the TSP obtained from the sparse cost matrix and the value of the

root node bipartite two-matching lower bound respectively. Since a positive reduced cost of an edge (i,j)

is a lower bound on the cost increase caused by including edge (i,j), it suffices to check that:

X+ -yi-yj >v (STSP)-v (root) Vi,j (13)

Equation (13) requires an 0 (N2) check but may be replaced by the less stringent condition:

X+ 1-yi-Yma >v (STSP)-v (root) Vi,j (14)

where Ymax is the largest yi. If this condition fails, the problem is resolved with a larger value of X.

6. Computational Results

We tested the algorithm on symmetric TSPs with random cost matrices and on euclidean problems.

Table (I) shows the results for random symmetric problems with cost matrix elements in the range [0-n].
We solved five problems of each size for n=100, 500, 1000, 2000, and 3000 using a Sun Microsystem

4/330 deskside computer. Random symmetric problems rarely possess more than six disjoint odd cycles
and phase three of the algorithm is usually able to remove them with no duality gap. Of the 25 problems
in Table (1), only one had a duality gap at the root node of the branch and bound tree. The two-matching
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lower bound was in excess of 99% of the optimal tour cost on all random problems tested. These results

are not surprising as random problems are known to be easier than euclidean problems. The speed of this

algorithm, however, on random problems seems to be superior to those based on general LP solvers.

Gr6tschel and Holland report the solution of a 1000 city random problem in 0.5 hours on an IBM 3081D
[151. As Table (1) shows, our algorithm is faster on similarly structured random problems t

This algorithm is less suited for Euclidean problems for two reasons. First, the number of disjoint
odd cycles is larger than for similarly sized random symmetric problems, and a duality gap frequently

persists. The second reason for diminished performance on Euclidean problems is the weakness of the

two-matching bound. To compare the relative importance of these two factors, consider the 532 city
problem of Padberg and Rinaldi [4]. The bipartite two-matching bound is 26620.5. Elimination of half
integral variable values via our heuristic increases the bound to the dual cost of 26823 while the primal

cost is 26916. The duality gap here is 0.35% while the gap between the dual and the optimal tour cost is
much larger, 3.2%. Thus the difficulty in solving euclidean problems is attributable more to the weakness

of the two-matching bounds than to the duality gap.

We tested the algorithm on standard euclidean problems available from the literature. We used a

suite of test problems, TSPLIB, which is available on an academic computer network [16]. Table (2)
shows algorithm performance on all problems in TSPLIB with about one hundred cities or less. The
algorithm was able to solve eleven of the fifteen test problems. The largest problem the algorithm solved
was 101 cities. For some problems the solution time is reasonable, but for several others it is

unacceptably long.

7. Conclusions

We have presented a dual formulation for the two-matching problem along with a heuristic solution
algorithm based on primal-dual methods. A duality gap arises because the heuristic does not necessarily
satisfy complementary slackness conditions, although this deficiency may be removed using a general

purpose LP solver as a post processing step. For random symmetric cost matrices, the gap is small
(frequently zero) and the heuristic closely approximates the cost of an optimal two-matching, thus
providing reasonable lower bounds for some symmetric TSPs. Random symmetric problems possessing
up to three thousand cities may be solved in a little over four minutes using a Sun 4/330.

On euclidean problems, two-matching alone does not provide a bound of sufficient strength to solve
large problems. For this reason, the algorithm presented here is not competitive with cutting plane based

methods for euclidean TSPs possessing more than a few dozen cities. Nevertheless, our primal-dual
method for obtaining near optimal two-matching bounds is much faster than general purpose LP codes.

If further work can eliminate the duality gap and strengthen the two-matching bound, the speed of special
purpose lower bounding algorithms may yield an exact symmetric TSP algorithm which is at least

competitive with cutting plane based methods that utilize general purpose LP solvers.

t An IBM 3081 D is approximately 50% faster than a Sun Microsystem 4/330.



-9-

Random Symmetric Problems

problem cases bound number of search solution

size strength tree vertices time (sec)

100 5 0.998652 7.6 0.696

500 5 0.999488 97.8 32.31
1000 5 0.999482 178.2 162.116

2000 5 0.999677 158.6 189.182

3000 5 0.999791 177.4 302.822

Table (1) - Randomly generated symmetric cost matrices, cost range [0-n], times are for a Sun

Microsystem 4/330 deskside computer. In all cases X = 200.

Problems from TSPLIB

problem name size type solution time (sec)
grl7.tsp 17 - 25.5

gr2 .tsp 21 - 0.06

gr24.tsp 24 - 0.14
bayg29.tsp 29 Euclidean 1.26

bays29.tsp 29 Euclidean 1.99
dantzig42.tsp 42 - 440
gr48.tsp 48 - 7613

att48.tsp 48 Euclidean

hk48.tsp 48 - 47.79

eil5 .tsp 51 Euclidean 3.16
st70.tsp 70 -

pr76.tsp 76 Euclidean

ei176.tsp 76 Euclidean 10.42

gr96.tsp 96 Euclidean

rat99.tsp 99 Rattled Grid 288

eill0l.tsp 101 Euclidean 3332

Table (2) - These problems belong to TSPLIB, a collection of test instances for the traveling salesman
and vehicle routing problems. TSPLIB contains symmetric TSP instances with up to 11849 cities and is

available via anonymous ftp on the academic computer network. A time entry of - indicates the

algorithm did not complete.
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